Characterizations of Input-to-State Stability for Infinite-Dimensional Systems

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterizations of input-to-state stability for infinite-dimensional systems

We prove characterizations of input-to-state stability (ISS) for a large class of infinite-dimensional control systems, including some classes of evolution equations over Banach spaces, time-delay systems, ordinary differential equations (ODE), switched systems. These characterizations generalize wellknown criteria of ISS, proved by Sontag and Wang for ODE systems. For the special case of diffe...

متن کامل

Input-to-state stability of infinite-dimensional control systems

We develop tools for investigation of input-to-state stability (ISS) of infinite-dimensional control systems. We show that for certain classes of admissible inputs the existence of an ISS-Lyapunov function implies the inputto-state stability of a system. Then for the case of the systems described by abstract equations in Banach spaces we develop two methods of construction of local and global I...

متن کامل

Characterizations of Integral Input-to-state Stability for Bilinear Systems in Infinite Dimensions

For bilinear infinite-dimensional dynamical systems, we show the equivalence between uniform global asymptotic stability and integral inputto-state stability. We provide two proofs of this fact. One applies to general systems over Banach spaces. The other is restricted to Hilbert spaces, but is more constructive and results in an explicit form of iISS Lyapunov functions.

متن کامل

The Circle Criterion and Input-to-State Stability for Infinite-Dimensional Systems∗

In this paper, the focus is on absolute stability and input-to-state stability of the feedback interconnection of an infinite-dimensional linear system Σ and a nonlinearity Φ : dom(Φ) ⊂ Lloc(R+, Y ) → L 2 loc(R+, U), where dom(Φ) denotes the domain of Φ and U and Y (Hilbert spaces) denote the input and output spaces of Σ, respectively (see Figure 1, wherein v is an essentially bounded input sig...

متن کامل

On characterizations of the input-to-state stability property

We show that the well-known Lyapunov sufficient condition for "input-to-state stability" (ISS) is also necessary, settling positively an open question raised by several authors during the past few years. Additional characterizations of the ISS property, including one in terms of nonlinear stability margins, are also provided.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: IEEE Transactions on Automatic Control

سال: 2018

ISSN: 0018-9286,1558-2523

DOI: 10.1109/tac.2017.2756341